Py.Cafe

huong-li-nguyen/

vizro-btn-styles-default

Vizro Iris Species Analysis

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Vizro is an open-source toolkit for creating modular data visualization applications.
# check out https://github.com/mckinsey/vizro for more info about Vizro
# and checkout https://vizro.readthedocs.io/en/stable/ for documentation.

import vizro.plotly.express as px
from vizro import Vizro
import vizro.models as vm
from vizro.actions import export_data

df = px.data.iris()

page = vm.Page(
    title="Vizro on PyCafe",
    layout=vm.Flex(),
    components=[
        vm.Container(
            title="Button Styles",
            layout=vm.Flex(direction="row"),
            components=[
                vm.Button(text="Primary", variant="filled"),
                vm.Button(text="Primary", icon="Download", variant="filled"),
                vm.Button(text="", icon="Download", variant="filled"),
                vm.Button(text="Secondary", variant="outlined"),
                vm.Button(text="Secondary", icon="Download", variant="outlined"),
                vm.Button(text="", icon="Download", variant="outlined"),
                vm.Button(text="Tertiary", variant="plain"),
                vm.Button(text="Tertiary", icon="Download", variant="plain"),
                vm.Button(text="", icon="Download", variant="plain"),
            ]
        ),
        vm.Graph(
            title="Graph Title",
            figure=px.histogram(df, x="sepal_width", color="species")
        ),
        vm.Button(text="Export Data", actions=export_data())
    ],
    controls=[vm.Filter(column="species"), vm.Filter(column="petal_length"), vm.Filter(column="sepal_width")],
)


dashboard = vm.Dashboard(pages=[page])
Vizro().build(dashboard).run()