Py.Cafe

jackparmer/

polar-maze

Street Fighter画像パッケージ

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import plotly.graph_objects as go
import numpy as np

# Initialize the Dash app
app = dash.Dash(__name__)

# Maze generation using a simple algorithm (DFS)
def generate_maze(n, m):
    maze = np.zeros((n, m), dtype=int)
    visited = np.zeros((n, m), dtype=int)
    
    def visit(x, y):
        directions = [(1,0), (-1,0), (0,1), (0,-1)]
        np.random.shuffle(directions)
        for dx, dy in directions:
            nx, ny = x + dx, y + dy
            if 0 <= nx < n and 0 <= ny < m and not visited[nx, ny]:
                maze[x, y] |= (1 << directions.index((dx, dy)))
                maze[nx, ny] |= (1 << directions.index((-dx, -dy)))
                visited[nx, ny] = 1
                visit(nx, ny)
                
    visited[0, 0] = 1
    visit(0, 0)
    return maze

# Maze-solving algorithm using DFS
def solve_maze(maze):
    n, m = maze.shape
    path = []
    visited = np.zeros((n, m), dtype=int)
    
    def dfs(x, y):
        if x == n-1 and y == m-1:
            path.append((x, y))
            return True
        visited[x, y] = 1
        path.append((x, y))
        directions = [(1,0), (-1,0), (0,1), (0,-1)]
        for dx, dy in directions:
            nx, ny = x + dx, y + dy
            if 0 <= nx < n and 0 <= ny < m and not visited[nx, ny]:
                if (dx == 1 and (maze[x, y] & 1)) or (dx == -1 and (maze[nx, ny] & 1)) or (dy == 1 and (maze[x, y] & 2)) or (dy == -1 and (maze[nx, ny] & 2)):
                    if dfs(nx, ny):
                        return True
        path.pop()
        return False

    dfs(0, 0)
    return path

# Convert maze to polar coordinates
def maze_to_polar(maze):
    n, m = maze.shape
    theta_step = 2 * np.pi / m
    r_step = 1 / n
    walls = []

    for i in range(n):
        for j in range(m):
            if not (maze[i, j] & 1):  # wall to the right
                theta = (j + 1) * theta_step
                walls.append(((i * r_step, theta), (i * r_step + r_step, theta)))
            if not (maze[i, j] & 2):  # wall down
                r = (i + 1) * r_step
                walls.append(((r, j * theta_step), (r, (j + 1) * theta_step)))

    return walls

# Convert path to polar coordinates
def path_to_polar(path, n, m):
    theta_step = 2 * np.pi / m
    r_step = 1 / n
    r_coords = []
    theta_coords = []
    
    for x, y in path:
        r_coords.append((x + 0.5) * r_step)
        theta_coords.append((y + 0.5) * theta_step)
    
    return r_coords, theta_coords

# Ensure the path does not touch the walls
def adjust_path(path, maze):
    n, m = maze.shape
    adjusted_path = []
    for i, (x, y) in enumerate(path):
        if i > 0:
            prev_x, prev_y = path[i - 1]
            if x == prev_x:
                if y > prev_y:
                    y -= 0.2
                else:
                    y += 0.2
            else:
                if x > prev_x:
                    x -= 0.2
                else:
                    x += 0.2
        adjusted_path.append((x, y))
    return adjusted_path

# Define the layout of the Dash app
app.layout = html.Div([
    html.H1("Polar Maze Generator", style={'color': 'black', 'textAlign': 'center'}),
    dcc.Graph(id='polar-maze-graph'),
    dcc.Slider(id='maze-size-slider', min=5, max=50, step=1, value=30, marks={i: f'{i}' for i in range(5, 51, 5)}),
    html.Div(id='maze-size-display', style={'textAlign': 'center'}),
    html.Button('Generate New Maze', id='generate-button', n_clicks=0)
], style={'backgroundColor': 'white', 'padding': '20px'})

# Callback to update the maze size display
@app.callback(
    Output('maze-size-display', 'children'),
    [Input('maze-size-slider', 'value')]
)
def update_maze_size_display(value):
    return f'Maze Size: {value}x{value}'

# Callback to generate a new maze
@app.callback(
    Output('polar-maze-graph', 'figure'),
    [Input('generate-button', 'n_clicks')],
    [State('maze-size-slider', 'value')]
)
def update_maze_graph(n_clicks, maze_size):
    maze = generate_maze(maze_size, maze_size)
    walls = maze_to_polar(maze)
    path = solve_maze(maze)
    adjusted_path = adjust_path(path, maze)
    r_coords, theta_coords = path_to_polar(adjusted_path, maze_size, maze_size)
    
    fig = go.Figure()
    
    for (r1, theta1), (r2, theta2) in walls:
        fig.add_trace(go.Scatterpolar(
            r=[r1, r2], theta=np.degrees([theta1, theta2]),
            mode='lines', line=dict(color='blue')
        ))
    
    fig.add_trace(go.Scatterpolar(
        r=r_coords, theta=np.degrees(theta_coords),
        mode='lines', line=dict(color='red', width=3),
        name='Solution'
    ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(visible=True, range=[0, 1]),
            angularaxis=dict(visible=True)
        ),
        showlegend=False,
        margin=dict(l=0, r=0, t=0, b=0)
    )
    
    return fig

# Run the app
if __name__ == '__main__':
    app.run_server(debug=True)